339 research outputs found

    Yield Enhancement of Digital Microfluidics-Based Biochips Using Space Redundancy and Local Reconfiguration

    Full text link
    As microfluidics-based biochips become more complex, manufacturing yield will have significant influence on production volume and product cost. We propose an interstitial redundancy approach to enhance the yield of biochips that are based on droplet-based microfluidics. In this design method, spare cells are placed in the interstitial sites within the microfluidic array, and they replace neighboring faulty cells via local reconfiguration. The proposed design method is evaluated using a set of concurrent real-life bioassays.Comment: Submitted on behalf of EDAA (http://www.edaa.com/

    Thermal-Safe Test Scheduling for Core-Based System-on-a-Chip Integrated Circuits

    No full text
    Overheating has been acknowledged as a major problem during the testing of complex system-on-chip (SOC) integrated circuits. Several power-constrained test scheduling solutions have been recently proposed to tackle this problem during system integration. However, we show that these approaches cannot guarantee hot-spot-free test schedules because they do not take into account the non-uniform distribution of heat dissipation across the die and the physical adjacency of simultaneously active cores. This paper proposes a new test scheduling approach that is able to produce short test schedules and guarantee thermal-safety at the same time. Two thermal-safe test scheduling algorithms are proposed. The first algorithm computes an exact (shortest) test schedule that is guaranteed to satisfy a given maximum temperature constraint. The second algorithm is a heuristic intended for complex systems with a large number of embedded cores, for which the exact thermal-safe test scheduling algorithm may not be feasible. Based on a low-complexity test session thermal cost model, this algorithm produces near-optimal length test schedules with significantly less computational effort compared to the optimal algorithm

    Test-Cost Modeling and Optimal Test-Flow Selection of 3D-Stacked ICs

    Get PDF
    Three-dimensional (3D) integration is an attractive technology platform for next-generation ICs. Despite the benefits offered by 3D integration, test cost remains a major concern, and analysis and tools are needed to understand test flows and minimize test cost.We propose a generic cost model to account for various test costs involved in 3D integration and present a formal representation of the solution space to minimize the overall cost. We present an algorithm based on A*—a best-first search technique—to obtain an optimal solution. An approximation algorithm with provable bounds on optimality is proposed to further reduce the search space. In contrast to prior work, which is based on explicit enumeration of test flows, we adopt a formal optimization approach, which allows us to select an effective test flow by systematically exploring an exponentially large number of candidate test flows. Experimental results highlight the effectiveness of the proposed method. Adopting a formal approach to solving the cost-minimization problem provides useful insights that cannot be derived via selective enumeration of a smaller number of candidate test flows.This research was supported in part by the National Science Foundation under grant no. CCF-1017391, the Semiconductor Research Corporation under contract no. 2118, a grant from Intel Corporation, and a gift from Cisco Systems through the Silicon Valley Community Foundation
    • …
    corecore